CITlab ARGUS for Arabic Handwriting
نویسندگان
چکیده
In recent years, it has been shown that multidimensional recurrent neural networks (MDRNN) perform very well in offline handwriting recognition problems like the OpenHaRT 2013 Document Image Recognition (DIR) task. With suitable writing preprocessing and dictionary lookup, our ARGUS software completed this task with an error rate of 26.27% in its primary setup. Keywords—handwriting recognition, neural network, LSTM
منابع مشابه
CITlab ARGUS for historical handwritten documents
We describe CITlab’s recognition system for the HTRtS competition attached to the 14. International Conference on Frontiers in Handwriting Recognition, ICFHR 2014. The task comprises the recognition of historical handwritten documents. The core algorithms of our system are based on multidimensional recurrent neural networks (MDRNN) and connectionist temporal classification (CTC). The software m...
متن کاملCITlab ARGUS for historical handwritten documents Description of CITlab’s System for the HTRtS 2014 Handwritten Text Recognition Task
We describe CITlab’s recognition system for the HTRtS competition attached to the 14. International Conference on Frontiers in Handwriting Recognition, ICFHR 2014. The task comprises the recognition of historical handwritten documents. The core algorithms of our system are based on multidimensional recurrent neural networks (MDRNN) and connectionist temporal classification (CTC). The software m...
متن کاملCITlab ARGUS for historical data tables Description of CITlab’s System for the ANWRESH-2014 Word Recognition Task
We describe CITlab’s recognition system for the ANWRESH-2014 competition attached to the 14. International Conference on Frontiers in Handwriting Recognition, ICFHR 2014. The task comprises word recognition from segmented historical documents. The core components of our system are based on multi-dimensional recurrent neural networks (MDRNN) and connectionist temporal classification (CTC). The s...
متن کاملCITlab ARGUS for historical data tables
We describe CITlab’s recognition system for the ANWRESH-2014 competition attached to the 14. International Conference on Frontiers in Handwriting Recognition, ICFHR 2014. The task comprises word recognition from segmented historical documents. The core components of our system are based on multi-dimensional recurrent neural networks (MDRNN) and connectionist temporal classification (CTC). The s...
متن کاملCITlab ARGUS for Keyword Search in Historical Handwritten Documents - Description of CITlab's System for the ImageCLEF 2016 Handwritten Scanned Document Retrieval Task
We describe CITlab’s recognition system for the Handwritten Scanned Document Retrieval Task 2016 attached to the CLEF 2016 hold in the city of Évora in Portugal, 5-8 September 2016 (see [9]). The task is to locate positions that match a given query – consisting of possibly more than one keyword – in a number of historical handwritten documents. The core algorithms of our system are based on mul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1412.6061 شماره
صفحات -
تاریخ انتشار 2013